Technology

Technology

 

QconCAT technology allows absolute quantification of your protein of interest in any sample.

 

Compared to other methods, PolyQuant’s expertise and QconCAT technology platform offer key advantages in terms of quality, speed and costs.

 

 

 

QconCAT technology

 

 

1. Select suitable proteotypic peptides for designing a synthetic gene

 

 

 

 

 

2. Gene synthesis and subcloning into expression vector

 

 

 

 

3. Expression of heavy isotope labeled reference polypeptide

 

 

 

4. Mix reference peptide with protein sample, digest and analyze by mass spectrometry

 

 

 

 

5. Result: absolute protein quantities

 

 

 

 

 

QconCAT technology 1,2 has been successfully applied in various fields of research, for example to:

 

  • determine the stoichiometries of proteins3 or post-translational modifications4 in complexes, signaling pathways5,6, organisms7,8 etc
  • quantify the complete proteome of various organisms9, 10
  • observe changes in target protein abundance in response to drugs or stimuli11, 12
  • distinguish and quantify protein isoforms

 

 

Selected references

 

Most recent publications employing QconCAT technology
  • Smith DG, Gingras G, Aubin Y, Cyr TD. Design and expression of a QconCAT protein to validate Hi3 protein quantification of influenza vaccine antigens.
    J Proteomics. 2016 Sep 2 [Pubmed]
  • Wolters JC, Ciapaite J, van Eunen K, Niezen-Koning KE, Matton A, Porte RJ, Horvatovich P, Bakker BM, Bischoff R, Permentier HP. Translational Targeted Proteomics Profiling of Mitochondrial Energy Metabolic Pathways in Mouse and Human Samples. J. Proteome Res. 2016 Aug 5 [Pubmed]
  • Pertl-Obermeyer H, Trentmann O, Duscha K, Neuhaus HE, Schulze WX. Quantitation of Vacuolar Sugar Transporter Abundance Changes Using QconCAT Synthtetic Peptides. Front Plant Sci. 2016 Apr 12 [Pubmed]
  • Lawless C, Holman SW, Brownridge P, Lanthaler K, Harman VM, Watkins R, Hammond DE, Miller RL, Sims PF, Grant CM, Eyers CE, Beynon RJ, Hubbard SJ. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring. Mol Cell Proteomics. 2016 Jan 10. [Pubmed]
  • Achour B, Al-Majdoub ZB, Al Feteisi H, Elmorsi Y, Rostami-Hodjegan A, Barber J, Ten Years of QconCATs: Application of Multiplexed Quantification to Small Medically-Relevant Proteomes. International Journal of Mass Spectrometry. 2015 Nov 30; 391:93-104. [PubMed]
  • Lancrajan I, Schneider-Stock R, Naschberger E, Schellerer VS, Stürzl M, Enz R. J., Absolute quantification of DcR3 and GDF15 from human serum by LC-ESI MS. Cell Mol Med. 2015 Jul;19(7):1656-71. [PubMed]

 

Contact us to find out more about the implementation of custom-made QconCATs in your research project or benefit from our experience by confiding us with a full service quantification project.

 

References for fields of research
  1. Beynon R. J., Doherty M. K., Pratt J. M., Gaskell S. J., Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nature Methods Vol. 2 (8), August 2005, 587-589. [download]
  2. Pratt J. M., Simpson D. M., Doherty M. K., Rivers J., Gaskell S. J., Beynon R. J., Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nature Protocols Vol. 1 (2), 2006, 1029-1043. [download]
  3. Al-Majdoub ZM, Carroll KM, Gaskell SJ, Barber J. Quantification of the proteins of the bacterial ribosome using QconCAT technology. J Proteome Res. 2014 Mar 7;13(3):1211-22. [PubMed]
  4. Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ.Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom. 2009 Dec;20(12):2211-20. [PubMed]
  5. Brownridge P, Lawless C, Payapilly AB, Lanthaler K, Holman SW, Harman VM, Grant CM, Beynon RJ, Hubbard SJ. Quantitative analysis of chaperone network throughput in budding yeast. Proteomics. 2013 Apr;13(8):1276-91. [PubMed]
  6. Carroll KM, Simpson DM, Eyers CE, Knight CG, Brownridge P, Dunn WB, Winder CL, Lanthaler K, Pir P, Malys N, Kell DB, Oliver SG, Gaskell SJ, Beynon RJ. Absolute quantification of the glycolytic pathway in yeast: deployment of a complete QconCAT approach. Mol Cell Proteomics. 2011 Dec;10(12):M111.007633. [PubMed]
  7. Southworth PM, Hyde JE, Sims PF. A mass spectrometric strategy for absolute quantification of Plasmodium falciparum proteins of low abundance. Malar J. 2011 Oct 25;10:315. [PubMed]
  8. Castro-Borges W, Simpson DM, Dowle A, Curwen RS, Thomas-Oates J, Beynon RJ, Wilson RA. Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics. J Proteomics. 2011 Aug 24;74(9):1519-33. [PubMed]
  9. Brownridge P, Holman SW, Gaskell SJ, Grant CM, Harman VM, Hubbard SJ, Lanthaler K, Lawless C, O’Cualain R, Sims P, Watkins R, Beynon RJ. Global absolute quantification of a proteome: Challenges in the deployment of a QconCAT strategy. Proteomics. 2011 Aug;11(15):2957-70. [PubMed]
  10. Lawless C, Holman SW, Brownridge P, Lanthaler K, Harman VM, Watkins R, Hammond DE, Miller RL, Sims PF, Grant CM, Eyers CE, Beynon RJ, Hubbard SJ. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring. Mol Cell Proteomics. 2016 Apr;15(4):1309-22. [Pubmed]
  11. Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci. 2013 Oct 15;14(10):20658-81. [PubMed]
  12. Mackenzie RJ, Lawless C, Holman SW, Lanthaler K, Beynon RJ, Grant CM, Hubbard SJ, Eyers CE. Absolute protein quantification of the yeast chaperome under conditions of heat shock. Proteomics. 2016 Jun 2; [PubMed]